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Abstract
In this paper we describe a computational method for coupling localized
molecular vibrations with contact phonons using a Green’s function formalism.
The phonon Green’s function is constructed from the dynamical matrix of the
contact–molecule–contact coupled system. Within this formalism we identify
the imaginary part of the self-energy as the vibron lifetime for decay into contact
phonons. This first-principles calculation allows us to compute the microscopic
energy dissipation and the heat transport from the molecule to the contacts. This
is a fundamental step for the evaluation of the power dissipated in molecular
devices and for studying the thermal stability of molecular devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The feasibility of molecular electronics as a viable future technology critically depends on
the stability of the compounds under bias conditions. Local heating is, among others, a crucial
quantity to be accurately evaluated to assess molecular stability and guide device optimizations.
Noticeably, current-induced local heating in a molecular junction made of octane-dithiol has
been measured for the first time recently [1]. Many models and theories have been developed
in recent years to account for electron–vibron scattering and heat dissipation in nanojunctions.
For an extended review on the subject see [2]. A crucial parameter for the computation of the
molecular heating is the rate of phonon dissipation into the reservoirs. Most models include
electron–vibration coupling and phonon release in molecular bridges and account for phonon
dissipation into the heat reservoirs by introducing phenomenological parameters [3–6].

In this work we consider a contact–molecule–contact system and, imposing open boundary
conditions on the atomic vibrations, provide a prediction of the decay rates of the molecular
phonons into the reservoirs. The calculation is based on a first-principles method, including the
elastic coupling of molecular modes with contact vibrations.
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In the first section we define the theory framework of the Green’s function formalism
applied to vibrations, which allows us to treat open boundary conditions. The method is used
to define the local density of states projected on the molecule and the phonon decay rates
on the contact reservoirs. This approach, coupled with a self-consistent rate equation, allows
us to define the out-of-equilibrium phonon populations of the junctions under bias conditions
and the local heating of the molecule. An application to two molecular systems comprising a
benzene molecule bridging two Si contacts is presented. The two systems differ in the Si–C
bond configuration, which is reflected in a large difference of the coherent tunnelling current as
well as the incoherent electron–phonon scattering and eventually local heating.

2. Theory

The atomic vibrations of the open structure are treated in the usual way [7–10], after decoupling
the Hamiltonian as a superposition of normal modes of vibration. The modes and frequencies
for the whole structure are obtained by solving the eigenvalue system∑

j

Hi j e
p
j =

∑

j

Mi j e
p
j ω

2
p, (1)

where e p
j are the normal modes, and Mi j and Hi j are the mass and Hessian matrices,

respectively. The mass matrix is a diagonal matrix containing the atomic masses and the
Hessian matrix is defined using the Hellmann–Feynman theorem as

Hα,β = ∂2 E

∂ Rα∂ Rβ

, (2)

where E is the total energy of the system. The practical problem posed by equation (1) is
that the contacts are semi-infinite and consequently the matrices Hi j and Mi j have infinite
dimension.

In order to treat the open boundary conditions on the bulk side of the contacts we use the
Green’s function formalism. The treatment is analogous to the electronic Green’s functions,
usually defined in quantum transport problems [11]. We start by defining the Green’s function
corresponding to equation (1) and partition the system into molecule and contact blocks. For
instance, restricting ourselves to the left contact only, the following equation can be written for
the Green’s function:[MMω2 − HM HM,L

HL,M MLω
2 − HL

] [
Gr

M Gr
M,L

Gr
M,L Gr

L

]
=

[
I 0
0 I

]
. (3)

The matrix blocks are obtained from the computation of the Hessian of the whole system. The
labels M and L stand for the molecular and the left contact blocks, respectively. In practice a
particular treatment must be taken for the contacts, since the calculation of the Hessian must be
performed on a finite system. Our strategy is to compute the Hessian for a truncated system that
includes a sufficiently large portion of the contacts. In each contact we can identify a surface
and a bulk, comprising two principal layers (PLs) which are chosen in order to satisfy the
condition that the Hessian matrix appears block-tridiagonal, i.e., the elastic coupling does not
extend beyond nearest-neighbour PLs. Hydrogen saturation or a buffer layer can be included
to terminate the cut edge at the bulk sides of each contact. The diagonal blocks of the Hessian,
corresponding to the PLs, and the coupling blocks between PLs are replicated an infinite
number of times, corresponding to the definition of an ideal bulk. Care is taken to ensure
converged results by increasing the PL size. The Green’s function is defined in the usual form,

Gr (ω2) = 1

MMω2 − HM − �r
R(ω2) − �r

L(ω2)
, (4)
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where the self-energies, �r
L,R(ω2), exactly map the infinite left and right contacts into the

finite portion of the molecular subsystem. Atomic units (h̄ = 1) are used throughout. In the
Green’s function (4) we keep the explicit dependence on ω2, as expressed in the corresponding
eigensystem (1). The self-energies are obtained from equation (3) as

�r
L(ω2) = HM,Lgr

L(ω
2)HL,M, (5)

where gr
L represents the surface Green’s function of the left semi-infinite contact, defined as

gr
L(ω2) = 1

MLω2 − HL
. (6)

This is computed using a recursive algorithm [12] from the knowledge of the PL blocks defined
above. The local phonon density of states (LDOS) projected on the molecule can be computed
from Gr (ω2) by means of the expression

ρ(ω2) = − 1

π
Tr

{
Im

[
Gr (ω2)

]M}
. (7)

This quantity is also expressed in terms of ω2. The connection with the usual DOS can be
recovered using the function derivative

ρ(ω) = ∂ N

∂ω
= 2ωρ(ω2) = −2ω

π
Tr

{
Im

[
Gr (ω2)

]M}
. (8)

The frequencies and modes of the molecule interacting with the contacts can be obtained
by solving the eigensystem∑

j

[HM,i j + �r
i j

(
ω2

)]
φ

q
j =

∑

j

ω2
qMi jφ

q
j . (9)

In principle this equation can give exact eigenvectors, φq , and frequencies, ωq , but it is rather
impractical to solve because of the nonlinear terms given by the complex self-energies. For
this reason it is often useful to take a first-order expansion of (9) which approximates the exact
eigenvectors of the coupled system with those of the uncoupled molecule, eq , satisfying the
equation ∑

j

HM,i j e
q
j =

∑

j

MM,i j e
q
j ω

2
q, (10)

whereas the mode frequencies are given by

ω̄2
q = ω2

q + Zq

∑

i j

eq
i Re

[
�r

i j (ω
2
q)

]
eq

j , (11)

where

Zq =
⎡

⎢⎣1 −
∑

i j

eq
i

∂ Re
[
�r

i j (ω
2)

]

∂ω2

∣∣∣∣∣∣
ω=ωq

eq
j

⎤

⎥⎦

−1

. (12)

In practice this approximation gives new, renormalized, frequencies and associated
broadenings, reflecting the interaction with the contact reservoirs. The mode broadening is
related to the imaginary part of the self-energy by


q =
∑

i j

eq
i Im

[
�r

i j(ω
2
q)

]
eq

j . (13)

The connection between broadening and the phonon decay rate can be obtained starting from
the usual representation of the Green’s function on the basis of the eigenmodes,

G̃q(ω) = 1

ω2 − ω̄2
q − i
q

∼= 1

2ω̄q(ω − ω̄q) − i
q
, (14)
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Figure 1. Hybrid structures comprising two semi-infinite contacts of hydrogenated Si(100),
reconstructed 2 × 1, and adsorbed organic molecules.

and the spectral density in terms of the Green’s function

ρ̃(ω) = −2ω̄q

π

∑

q

Im
[
G̃q(ω)

] ∼= − 1

π

∑

q


q

2ω̄q

(
ω − ω̄q

)2 +
(


q

2ω̄q

)2
(15)

which leads, using the relationship τ−1 = −2 Im[�] between lifetime and self-energy, to the
identification of Jq = −
q

ω̄q
as the phonon decay rates.

The method implemented is essentially a Fermi golden rule, including first-order one-
phonon-to-one-phonon decay processes, but it obviously neglects a large number of other
mechanisms that may take place when the direct decay is forbidden. High-frequency modes,
characteristic of molecular vibrations, generally lie well beyond the vibrational bandwidth of
the bulk reservoirs and cannot decay other than via one-to-many phonon channels [13, 14].
Some of these effects can be taken into account by introducing effective phonon densities for
the contact modes [15]. This, for instance, allows the correct prediction of the temperature
dependence of many-phonon decay rates. However, quantitative predictions of one-phonon-to-
many-phonons decay rates require the calculation of coupling constants related, for instance, to
anharmonic potentials, not explicitly treated in this work. Other decay mechanisms may also be
represented by vibrational coupling with the surrounding molecules, which generally depends
on the environment, or with multistep processes involving relaxations to lower-energy modes
via anharmonic couplings. Radiative decays may also play an important role in some specific
molecules.

3. Numerical simulation

The method has been applied to two systems (see figure 1) obtained by a sandwich of an
organic layer between two Si contacts. The contacts of both structures are identical and made
of hydrogenated Si(100), 2 × 1 reconstructed. The molecules are adsorbed on the surface via
Si–C covalent bonds. For the first system the molecule chosen is C10H12 (structure A), whereas
C10H10 is used in the second structure (structure B). Periodic boundary conditions are imposed
in the direction parallel to the Si surfaces on both structures.

The total energy of the contact–molecule–contact system is obtained through a local basis
density functional scheme, where appropriate approximations are considered in order to make

4
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Figure 2. Phonon DOS of the contacts.

the approach efficient for a large number of atoms (DFTB) [16–18]. These include the use of an
optimized minimal basis set and the neglect of three-centre integrals. Both the electronic and
the repulsive potential are expressed as a superposition of atomic pair-potentials, obtained from
ab initio density functional theory (DFT) reference calculations [18] allowing extensive use of
look-up tables. The method is very successful in describing structural properties of materials
and also gives accurate results for the mode frequencies.

4. Projected DOS

We have seen how the contacts induce a perturbation on the molecular modes and vibrational
frequencies. Additionally, we have obtained two approaches for the evaluation of the projected
DOS. The first method gives the exact DOS as obtained from the exact Green’s function of the
open system, defined in equation (8). In the second method the self-energies are approximated
by an energy-independent shift and broadening, leading to the form of equation (15). For
vanishing coupling (�r (ω2) → 0) the DOS tends to a superposition of delta-functions. This
happens for frequencies quite above the Si bandwidth.

The left and right contacts are identical and therefore the phonon bandwidths are the same.
The projected phonon DOS on the contact surface is shown in figure 2. This is obtained from
the surface Green’s function of equation (6). The frequency cutoff (ωD) is about 500 cm−1,
appropriate for bulk Si. The peaks around 580 and 2000 cm−1 are related to the hydrogen
passivation of the silicon surface.

The projected phonon DOS on the molecule is represented in figure 3. The figure shows
a comparison between the exact and the approximated DOS up to the Si cutoff frequency.
Obviously the simple shift + broadening approximation is sometimes too crude and does not
capture the richness of the exact result. However, it gives a first-order approximation to the
complex problem of defining the vibrational lifetimes.

5. Phonon decay rates

The phonon decay rates, Jq , of both structures are computed using equation (13) and are shown
in figure 4. Qualitatively similar results are obtained, which strongly depend on the contact
DOS. Indeed, Jq is fast for the energy modes lying within the contact phonon bandwidth
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Figure 3. Phonon DOS projected on the molecule. The dashed lines correspond to the unperturbed
molecular frequencies. The solid line is the lowest-order approximated DOS and the grey shaded
area represents the exact DOS.

Figure 4. Decay rates of the molecular vibrons into contact phonons.

and sharply decreases beyond, reaching very small values. These decays are likely to be
underestimated, as discussed in the previous section, because they do not include anharmonic
corrections that generate one-phonon-to-many-phonons decay channels.

Despite the difference in nature of the Si–C bonds between the two systems considered
(one bond Si–C for structure A and two bonds for structure B), the decay rates have similar
trends and magnitudes. Due to its higher number of bonds to the surface and shorter length,
molecule B is more rigid and passes higher mode frequencies. For this reason the elastic
coupling to the surface is slightly more effective with respect to molecule A, as also seen in
figure 4. Indeed, the lowest-frequency modes of structure B have rates at least twice as large as
those of structure A.

6
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Figure 5. Mode localized near (a) the left contact, (b) the right contact and (c) symmetric on both
contacts.

The localization of the modes is another important parameter that governs the decay
rates into the contacts. In general, even when the contacts are identical and the bonds of
the molecule to the surfaces are the same (as in our case) the decay rate of the molecular
vibrons in the two leads can differ significantly. Indeed, the decay rates depend on the
localization of the vibrational modes. For instance, consider the vibrational mode of structure
A at ωq

∼= 2900 cm−1. This is mainly localized on one side of the molecule, as shown in
figure 5(a). As a consequence, the decay rate into the right contact is much higher than the
decay rate into the left contact (J R

q � J L
q ). In the opposite case, the mode at ωq

∼= 2907 cm−1

has a much higher decay rate on the right contact, near which it is localized (see figure 5(b)).
Eventually, symmetric modes, such as for instance that at ωq

∼= 1300 cm−1, have an equal
decay rate in the two contacts (J R

q
∼= J L

q ) (see figure 5(c)). The systems analysed in this
paper possess almost perfect inversion symmetry; therefore, for each mode localized near one
contact there is an almost degenerate mode localized near the other contact (degeneracy may
be left because of a small symmetry breaking due to the numerical geometry optimization). As
a consequence the heat release into the two contacts is the same. However, we can envisage
that suitably constructed asymmetric molecules may give strongly asymmetric decays, leading
to voltage-induced temperature gradients (Peltier effect) or heat rectifiers.

6. Molecular heating

In this section we show the impact of the decay rates, Jq , on the molecular temperature
reached under bias conditions. In appendices A and B the essential results of the theory of
incoherent transport and molecular heating are reported [19]. Figure 6 shows the coherent
current density for both structures at increasing biases. It is possible to see that structure B is
much better conducting than structure A. The reason for this pronounced difference is that in
structure A the short chains of C2H2 represent insulating bridges which are absent in structure
B. The Si contacts are made conducting by assuming a degenerate p-doping concentration of
1019 holes cm−3. For this reason, at small biases, a larger current is found at energies close
to the Si valence band-edge. The peaks appearing within the Si bandgap are related to hybrid
molecular states. As the bias above 1.2 V the valence-to-conduction band tunnelling takes

7
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Figure 6. Current density as a function of energy for increasing biases from 0.4 to 2.0 V. The curves
are shifted by one order of magnitude for clarity.

Figure 7. Local temperature reached by the molecules under bias. The upper panel corresponds to
structure A, the lower panel to structure B. Solid lines correspond to p = 1019 holes cm−3, dotted
line to p = 1018 holes cm−3. The vertical lines mark an interval where no steady-state solutions
are found.

over, leading to an approximately linear increase of current versus voltage. Higher coherent
tunnelling is reflected in higher incoherent current, and consequently a higher local heating is
generally found for structure B.

The steady-state temperature reached by the two structures under bias conditions is
reported in figure 7 as a function of voltage. In this calculation the contact reservoirs are
assumed to be at an equilibrium temperature of T = 0 K.

8
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The temperature versus bias trend is qualitatively similar in both structures. Initially the
temperature steadily increases, up to 0.8 V, then it tends to decrease and increase again above
1.2 V. This particular behaviour is the result of the delicate balance between absorption and
emission of phonons and the presence of the Si bandgap. Initially emission is favoured over
absorption and the number of excited modes increases with voltage, leading to a constant
increase of molecular temperature. In the range 0.8–1.2 V the channel of phonon absorption
via valence to conduction band tunnelling opens. This is particularly efficient for modes in the
range 1000–1500 cm−1. Since the emission processes are essentially unaffected, the molecular
temperature tends to decrease. Above 1.2 V, when the band-to-band tunnelling regime is
reached, the emission rapidly increases, particularly in the low-energy modes, leading to a
rise of the molecular temperature. Spectroscopic features also play a role, such as for instance
the slight peak of temperature found for structure A at 1.15 V, associated to a molecular state
also visible in the current density of figure 6.

As anticipated above, structure B tends to heat up much more. In the range between 1.2 and
1.4 V, we even find a bias interval in which no stable steady-state solutions are possible (within
the approximations used). In this bias window the molecular distribution of phonons diverges
for one or more modes and the molecule is not likely to be stable. The presence of modes
with low decay rates due to inefficient coupling with the contacts is crucial in determining
this behaviour. From a mathematical point of view, the absence of a steady-state solution is
indicated when, for some mode, Nq becomes negative. According to equation (30), instability
is found when Jq + Aq − Eq becomes negative for at least one mode. Clearly the value
of Jq plays an important role in this calculation, since the stability entirely depends on the
difference Aq − Eq for modes with very small Jq . The inclusion of multi-phonon scattering
and anharmonic decays may increase Jq , leading to more stable behaviours. Interestingly, for
biases larger than 1.4 V the absorption turns to be efficient, compensating the emission, and
steady-state solutions are possible. Clearly the bandgap, Fermi level, density of states and
electron–phonon coupling interplay in determining this behaviour, according to equations (28)
and (29). In order to emphasize this fact we have calculated the temperature behaviour of
structure B for a lower doping of the Si contacts of 1018 holes cm−3, plotted in the lower panel
of figure 7 with a dotted line. In this case the molecular heating is smaller and no instabilities
are found because of a generally lower incoherent current density.

7. Conclusions

In this work we have discussed a first-principles method to compute the heat dissipation
in molecular electronics, accounting for elastic coupling of localized vibrons with contact
phonons. The Green’s function formalism gives the theoretical framework in which the
projected phonon density of states and the decay rates of the molecular vibrations can be
computed. The knowledge of the vibrational lifetimes allow us to set up a rate equation for
the phonon dynamics that can be solved self-consistently to find the steady-state distribution of
quanta and compute the effective temperature reached by the molecule when a bias is applied.
The decay rates are found to be closely related to the phonon bandwidth of the contacts. The
method has been applied to two similar systems, showing a different behaviour.

Appendix A

In this appendix we briefly report the essential result of the theory of quantum transport
with incoherent electron–vibron scattering presented in [5]. The electron–phonon coupling
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Hamiltonian is written in the form

Hel−ph =
∑

q,μ,ν

γ q
μνc†

μcν

[
a†

q + aq
]
, (16)

by making use of the standard relationships between the position operator and the
creation/annihilation phonon operators, a†

q and aq , and where c†
μ and cν are, respectively, the

creation and annihilation operators of one electron in the atomic basis. The coupling matrices,

γ α
μν =

√
h̄

2ωq Mq

∑

α

[
∂ Hμν

∂ Rα

−
∑

σ,λ

∂Sμσ

∂ Rα

S−1
σλ Hλν −

∑

σ,λ

HμλS−1
λσ

∂Sσν

∂ Rα

]
eq
α, (17)

contain the atomic masses, Mq , the mode frequencies, ωq , and the normal modes of vibration,
eq
α . The non-orthogonality of the atomic basis set is reflected by the presence of the overlap

matrix, Sμν , and its derivative with respect to the ionic positions, Rα .
The electron–phonon interaction is treated within perturbation theory of the non-

equilibrium Green’s function formalism, and the current through the junction is computed using
the Meir–Wingreen formula [20],

I = 2e

h

∫ +∞

−∞
Tr

[
�<

L (ω)G>(ω) − �>
L (ω)G<(ω)

]
dω, (18)

where �
<(>)
L represents the injection rate of electrons (holes) from the left contact of the

device, while G<(>) is the electron (hole) correlation function, obtained from the kinetic
equations [21, 22],

G<(>)(ω) = Gr (ω)�<(>)(ω)Ga(ω), (19)

and Gr(a) are the retarded (advanced) Green’s functions given by the usual expressions,

Gr(a)(ω) = [
ωS − H − �r(a)

]−1
. (20)

The lesser and greater self-energies (SEs) are given by the sum of three terms,

�<(>)(ω) = �
<(>)
L (ω) + �

<(>)
R (ω) + �

<(>)

ph (ω). (21)

The current expressed by equation (18) contains both a coherent and an incoherent component.
The coherent component arises from �

<(>)
L (ω) and �

<(>)
R (ω), whereas the incoherent

component is associated to �
<(>)

ph (ω), describing scattering processes caused by electron–
phonon interactions. The electron–phonon self-energy can be evaluated with diagrammatic
techniques. The self-consistent Born approximation (SCBA) is expressed by

�
<(>)
ph (ω) = i

∑

q

∫ +∞

−∞
dω′

2π
γq G<(>)(ω − ω′)γq D<(>)

q (ω′), (22)

where D<(>)
q are the correlation functions related to the vibrational modes,

D<
0,q(ω) = −2π i

[
(Nq + 1)δ(ω + ωq) + Nqδ(ω − ωq)

]

D>
0,q(ω) = −2π i

[
(Nq + 1)δ(ω − ωq) + Nqδ(ω + ωq)

]
,

(23)

assumed as Einstein oscillators, i.e. the vibron lifetimes are neglected in the phonon propagator.
Inserting (23) into (22), it is possible to derive an explicit form for the electron–phonon self-
energy,

�<
ph =

∑

q

Nqγq G<(E − ωq)γq + (Nq + 1)γq G<(E + ωq)γq

�>
ph =

∑

q

Nqγq G>(E + ωq)γq + (Nq + 1)γq G>(E − ωq)γq .
(24)

10
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The self-consistency in equation (22) is implied by the use of a renormalized Green’s function,
G<, whereas the first-order Born approximation is obtained when the unrenormalized (zeroth-
order) Green’s function is used to evaluate the electron–phonon self-energy. Using the
relationship Im[�r

ph] = 1/2(�>
ph − �<

ph), it is possible to compute �r
ph, which modifies the

electron propagator in (20). Since we are mainly interested in the electron lifetime and we
restrict ourselves to weak electron–phonon coupling, the real part of �r

ph, responsible for a
polaronic shift, is neglected. Consistently, we also neglect the first-order Hartree diagram,
which gives a contribution to the real part only.

Appendix B

In this appendix we briefly report the essential result of the theory of heat dissipation in
molecular devices presented in [19]. When a bias is applied to a molecular junction, heat is
released in the molecule via incoherent electron–phonon scattering processes. At steady state,
the rate of phonons emitted in the junction must balance the rate of phonons dissipated into the
heat reservoir. In this model we assume that the two contacts play the role of such reservoirs,
and heat release into them is described by the phonon decay rates, Jq . In order to compute the
steady-state population of quanta in the molecular degrees of freedom, a semiclassical approach
has been followed, by setting a simple rate equation [6],

dNq

dt
= Rq − Jq

[
Nq − nq(T0)

]
, (25)

balancing the rate, Rq , of quanta emitted, with the decay rate, Jq , into the bath. The first term
contains the net emission of phonons into the molecule due to the electron–vibration coupling.
The second tends to restore the population to the equilibrium Bose–Einstein distribution,
nq(T0), characterized by the contact temperature, T0. At steady state the phonon distribution in
the molecule is given by

Nq = nq(T0) + Rq/Jq . (26)

It is possible to demonstrate [19] that

Rq = [
(Nq + 1)Eq − Nq Aq

]
, (27)

where Aq and Eq can be interpreted to some extent as the phonon emission and absorption
rates, given by

Eq = 2

h

∫ +∞

−∞
Tr

[
γq G<(ω + ωq)γq G>(ω)

]
, (28)

and

Aq = 2

h

∫ +∞

−∞
Tr

[
γq G<(ω − ωq)γq G>(ω)

]
. (29)

Combining equations (30) and (27), it is possible to obtain the out-of-equilibrium number of
phonons accumulated in the junction under bias,

Nq = nq(T0)Jq + Eq

Jq + Aq − Eq
. (30)

Since the term Aq and Eq depend themselves on the population, Nq , via the Green’s function,
G<, containing the phonon propagator, a self-consistent loop is necessary.

Once the Nq s are computed, we define an effective molecular temperature, obtained by
redistributing the energy stored in the molecular vibrations into a Bose–Einstein distribution,

11
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nq(Tmol), with temperature Tmol. This procedure is equivalent to imposing energy conservation,

∑

q

ωqnq(Tmol) =
∑

q

ωq Nq . (31)

The definition of the local temperature is a crucial quantity for the analysis of molecular
stability.
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